Synthesis, characterization and application of nanostructured vanadia model catalysts for partial oxidation reactions

Christian Hess

Dept. Inorganic Chemistry, Fritz Haber Institute, Berlin

Model catalysts based on nanostructured materials

- Spectroscopic characterization of the synthesis
- Propane partial oxidation over highly dispersed vanadia
- Influence of water on surface structure and dispersion

Motivation: Propane to acrylic acid conversion

Industrial process: 2-stage oxidation of propene

Alternative process: Direct oxidation of propane

* T. Ushikubo, H. Nakamura, Y. Koyasu, S. Wajiki, Mitsubishi Kasei Corporation, US 005380933A (1995)

Model catalysts based on nanostructured silica

Limited understanding of MoVTeNb oxides:

- Structural complexity
- Similar composition/structure of surface and bulk

C. Hess, Surf. Sci. 600 (2006) 3695

- Model catalysts based on nanostructured materials
- Spectroscopic characterization of the synthesis
- Propane partial oxidation over highly dispersed vanadia
- Influence of water on surface structure and dispersion

Synthesis of vanadia supported on silica SBA-15

⇒ Novel method to anchor TM oxides on mesoporous supports

C. Hess, J.D. Hoefelmeyer, T.D. Tilley, J. Phys. Chem. B 108 (2004) 9703

Synthesis of vanadia supported on silica SBA-15

Mechanical stability: Pressure treatment at 750 MPafunctionalized + ion exchangedincipient wetness

⇒ Significant increase in stability of mesoporous support matrix

R. Herbert, U. Wild, C. Hess, R. Schlögl, Chem.-Ing.-Tech. 78 (2006) 1263

Visible Raman characterization of V_xO_y/SBA-15

 \Rightarrow Raman allows for sensitive detection of V=O in cryst. V₂O₅

DRIFTS characterization during synthesis

C-H bending vibrations

⇒ DRIFTS data demonstrates the presence of Si-propyl chain

C. Hess, U. Wild, R. Schlögl, Microp. Mesop. Mater. 95 (2006) 339

C1s XP spectra during synthesis of $V_x O_y$ /SBA-15

⇒ Detailed information on framework structure

N1s XP spectra during synthesis of $V_x O_y$ /SBA-15

⇒ Quantitative surface composition of intermediates

- Model catalysts based on nanostructured materials
- Spectroscopic characterization of the synthesis
- Propane partial oxidation over highly dispersed vanadia
- Influence of water on surface structure and dispersion

Propane selective oxidation to propene

Selective oxidation of propane: Effect of steam

1200 h⁻¹, 0.5 ml, $C_3H_8/O_2/N_2/H_2O = 2.8/6.3/50.8/40$

400°C	C ₃ H ₈ Conversion (%)	Time on stream (min)	Selectivity (%) AA	C ₃ H ₆	AcetAc	CO _x	Yield of AA (%)
SBA-15	0	165	0	0	0	0	0
3.3 wt% V/SBA-15	8	165	84	10	2	4	6.8
	5	345	86	13	1	0	4.5

⇒ Highly dispersed vanadia shows high selectivity towards AA

C. Hess, M.H. Looi, S.B. Abd Hamid, R. Schlögl, Chem. Comm. (2006) 451

Selective oxidation of propane over $V_x O_y / SBA-15$

before

060315-002 1 5kV 2 5mm x100k SE(U LA5)

Mesoporous structure is largely conserved!

m 060327-004 1.5kV 2.5mm x100k SE(U,LA5)

after

- Model catalysts based on nanostructured materials
- Spectroscopic characterization of the synthesis
- Propane partial oxidation over highly dispersed vanadia
- Influence of water on surface structure and dispersion

Structural changes of vanadia during dehydration

⇒ Dehydration dramatically changes surface vanadia structure

C. Hess, I.J. Drake, J.D. Hoefelmeyer, T.D. Tilley, A.T. Bell, Catal. Lett. 101 (2005) 1

Structure of highly dispersed V_xO_v/SBA-15: FTIR

Using NO to probe the structure

⇒ Bridged nitrates imply presence of dimeric/polymeric vanadia

C. Venkov, C. Hess, F.C. Jentoft, Langmuir 23 (2007) 1768

Quasi in situ XPS of $V_x O_y$ /SBA-15: V2p_{3/2}

 \Rightarrow XPS reveals strong positive BE shift for silica supported V_xO_v

Effect of water on dispersion of $V_x O_y / SBA-15$

XPS yields information on vanadia dispersion

C. Hess, R. Schlögl, Chem. Phys. Lett. 432 (2006) 139

V loading in $V_x O_v / SBA-15$: XPS vs. bulk

⇒ Close resemblance of V/Si XPS-bulk: Correlation XPS-Raman

C. Hess, G. Tzolova-Müller, R. Herbert, J. Phys. Chem. C (accepted)

Multi in situ spectroscopy - experimental setup

Direct correlation of structure and dispersion

Other model approaches: $V_x O_y / SBA-15 / SiO_2 / Si$

X. Chen, M. Steinhart, C. Hess, U. Gösele, Adv. Mater. 18 (2006) 2153

Summary and Outlook

- Controlled synthesis of vanadia model catalysts using silica SBA-15
 - ⇒ reaction mechanism
 - ⇒ increased mechanical stability
 - ⇒ isolate/mimic vanadia sites of complex oxides
 - ⇒ new insight in structure of supported vanadia
- Multi *in situ* spectroscopy (Raman, UV-Vis, XPS)
 ⇒ correlation of vanadia structure and dispersion

- Dehydrated state is perfect starting point
 - ⇒ structure-activity relation of propane selective oxidation reactions
- Support effects
 - \Rightarrow TiO_x/SBA-15, positive binding energy shift at low titania loadings

Acknowledgements

Fritz Haber Institute, Berlin: Rita Herbert Ute Wild Dr. Ceco Venkov Dr. Friederike Jentoft Members of the Department of Inorganic Chemistry Prof. Dr. Robert Schlögl

<u>Combicat, Kuala Lumpur</u>: Dr. Ming Hoong Looi

<u>MPI of Microstructure Physics, Halle:</u> Dr. Xin Chen Dr. Martin Steinhart

MAX-PLANCK-GESELLSCHAFT